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Heavy metal contamination in drinking water is a significant public health concern worldwide. A study by 
the Environmental Monitoring Assessment has shown that over 140 million people globally are exposed to 
drinking water containing unsafe levels of heavy metals such as lead, arsenic, cadmium, and mercury 
(Peterson et al., 2021). Chronic exposure to these contaminants has been linked to neurological disorders, 
developmental delays, kidney failure, and increased cancer risk. Conventional water treatment 
technologies, such as chemical precipitation, ion exchange, and activated carbon adsorption, suffer from 
limitations due to cost, loss of efficiency, and negative environmental impact, particularly in low-resource 
environments. To address these limitations, we developed a bioengineered filtration system that utilizes 
genetically modified bacteria to enhance the removal of heavy metals from contaminated water sources. 
The system employs the following microbial strains: Escherichia coli, Bacillus subtilis, and Pseudomonas 
putida, each engineered to optimize distinct mechanisms of metal removal: biosorption, bioaccumulation, 
and bioprecipitation. These processes were integrated into a modular biofilter, allowing for scalability and 
effective purification. This approach offers a promising alternative to conventional filtration technologies by 
leveraging the adaptability and efficiency of engineered biological systems. It is low-cost with a high removal 
efficiency, and a modular design that makes it especially suitable for deployment in underserved 
communities and areas with limited access to advanced water treatment infrastructure. With further 
development, bioengineered filtration could play an extremely large role in global efforts to ensure safe and 
sustainable access to clean drinking water. 

Keywords: Heavy metal removal, biofiltration system, biosorption, bioaccumulation, water 
purification 

 

eavy metals, such as lead, arsenic, 
mercury, cadmium, chromium, 
nickel, copper, zinc, iron, manganese, 

and aluminum, are recognized as toxic 
contaminants that pose significant risks to 
both human health and the environment. 
These contaminants are released from 
factories and industrial runoff, causing major 
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issues in underdeveloped areas without water 
treatment infrastructure. Even at low 
concentrations, these metals can cause 
numerous health issues. Developmental and 
cognitive impairments in children are 
associated with lead and arsenic exposure. 
Mercury and cadmium have been found to 
damage the nervous system and organs, while 
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chromium and nickel can cause respiratory 
and skin problems (Marshall et al., 2019; 
Pacini et al., 2012; Iskandar et al., 2024; 
Gelardi et al., 2017). Excessive exposure to 
copper and zinc has been shown to affect the 
liver and kidneys, and iron has been observed 
to disrupt the balance of essential minerals in 
the body (Gembillo et al., 2022; Allen & 
Masters, 1985; Goyer, 1997). Manganese 
toxicity has been linked to neurological 
disorders, and aluminum has been associated 
with Alzheimer's disease and bone health 
issues (Budinger et al., 2021; Mjöberg et al., 
1997). Given these harmful effects, safely 
removing these metals from drinking water is 
crucial to ensuring maximum public health. 
A study published in Archives of Toxicology 
discusses how heavy metals interfere with 
cellular processes. The article further states, 
“heavy metals are known to interfere with 
signaling pathways and affect a variety of 
cellular processes, including cell growth, 
proliferation, survival, metabolism, and 
apoptosis” (Rehman et al., 2024). Despite 
such an awareness, the current studies on 
removal methods are limited to basic aspects 
of the filtration process and have not been 
effectively scaled. Improvements in 
scalability and design versatility are aimed at 
being achieved by the proposed filter. The 
system will use controlled flow rate pumps to 
maximize filtration efficiency and provide a 
way to calibrate the system. By integrating 
synthetic biology and modular design, this 
biofiltration system introduces a targeted 
approach to heavy metal pollution in water. 

Systems level 
The biofiltration system is made to remove 
nearly all heavy metal pollutants from water. 
Yet, it is also small enough to be transported 
easily, making it a much more versatile and 
less expensive option compared to traditional 
systems. The filter is comprised of three 
targeted chambers, as shown in Figure 1, 
through which various heavy metal pollutants 
are removed. The system can be scaled for 
different applications. For example, smaller 
models can be made for residential solutions, 
and larger models can be created for 
community-wide solutions. A solar-powered 
pump is used to push water through the 

biofiltration mediums, which use the 
genetically modified bacteria to filter out 
heavy metals in the water. At the system's 
core, three main biofiltration chambers are 
used, each holding genetically modified 
bacteria: Escherichia coli, Bacillus subtilis, 
and Pseudomonas putida. Encoded plasmids 
produce metal-detoxifying enzymes, metal-
binding proteins, and efflux pumps, which 
enhance each strain’s ability to biosorb, 
bioaccumulate, and bioprecipitate heavy 
metals. These microbes are immobilized in a 
porous biochar medium, which supports the 
bacterial cells and serves as a physical 
filtration mechanism. The biochar medium 
includes protection from environmental 
stressors and can keep nutrients for the 
bacteria in its porous structure. Contaminated 
water is directed to flow through the 
chambers sequentially: metals partially 
removed by one strain are further targeted 
downstream, resulting in a higher overall 
removal rate for the targeted heavy metals. 

The filter is also designed to ensure no 
bacteria can escape the system or cross-
contaminate the chambers, as UV water 
treatment is applied between filtration pods. 
This treatment preserves the biosystem inside 
each pod and keeps it isolated. The system's 
modularity allows for easy modification and 
adjustment based on the current application. 
The filter represents an innovative approach 
to biologically treating water, enabling the 
simultaneous removal of multiple heavy 
metal pollutants. This versatility makes it a 
promising solution for large-scale water 
purification, especially in regions affected by 
diverse environmental contaminants. 

Yellow arrows show the direction of 
water flow. 

Device level 
The filter uses three genetically engineered 
bacterial strains: Escherichia coli, Bacillus 
subtilis, and Pseudomonas putida. These 
bacteria were chosen for this filter due to their 
natural affinity for removing certain heavy 
metals. For example, Escherichia coli 
contains PbrA and PbrB proteins, which 
contribute to detoxifying lead in the cell. 
Each strain identified similarly targets a 
specific type of heavy metal from 
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contaminated water. These strains are 
modified by inserting plasmids containing 
genetic codes for heavy metal filtration from 
other species.  

The Escherichia coli is engineered to 
express metal-binding proteins such as 
metallothioneins, which naturally chelate 
metal ions like copper. These proteins bind 
heavy metals intracellularly and enhance the 
bacteria’s ability to filter out heavy metals 
such as copper and zinc through biosorption 
and bioaccumulation.  

The Bacillus subtilis is engineered to 
overproduce extracellular polymeric 
substances (EPS), sticky polymers secreted 
by cells. EPS is a biofilm matrix in functional 
groups that provide binding sites for heavy 
metal ions. This enables the B. subtilis 
bacteria to capture iron, lead, and mercury 
from the water.  

The Pseudomonas putida is genetically 
engineered to express the mer operon, which 
includes the merA and merB genes. These 
genes code for the enzyme responsible for 
transforming mercury ions into elemental 
mercury, which is non-volatile. This process 
is known as bioprecipitation and is effective 
for mercury, cadmium, chromium, and lead.  

These bacteria target a wide range of 
heavy metals, making the system adaptable to 
different types of water and diverse 
environments.  

Parts level 
Each bacterial strain will be genetically 
engineered using plasmids with synthetic 
operons designed to enhance its 
characteristics and aid in removing heavy 
metals. The non-pathogenic E. coli strain will 
be modified with a constitutive promoter 
gene, which helps promote the expression of 
metallothionein genes such as MT-1 and MT-
2. These proteins then bind intracellularly to 
heavy metals like zinc and copper, allowing 
for biosorption and bioaccumulation within 
the cell. The B. subtilis strain will be 
engineered to increase the production of 
extracellular polymeric substances (EPS). 
The process includes a promoter that controls 
the genes dictating the production of EPS, 
such as espA-O operons. The overproduction 
of EPS helps with biofilm production and 
metal binding. These genes will thus help 
with the biosorption of heavy metals like 
lead, mercury, and iron.  

P. Putida will be engineered to express 
the mer operon (merA and merB), key 
enzymes for filtering out mercury through 
bioprecipitation. The merA operon reduces 
mercury to a less toxic elemental mercury, 
and the merB operon breaks down organic 
mercury compounds.  

Safety 
Safety is a crucial central focus throughout 
the development and usage of our 
biofiltration system. All genetic 
modifications are to be performed using 
biosafety level 1 (BSL-1) organisms and will 
follow all institutional biosafety guidelines 
and NIH Recombinant DNA Advisory 
Committee standards to prevent accidental 
exposure or environmental release. The 
genetically engineered bacteria are to be 
immobilized within a biochar environment, 
which would reduce the risk of 
environmental escape. All experiments will 
be conducted in controlled lab environments 
with proper containment and disposal 
procedures for all materials during testing. 
Personal protective equipment (PPE), 
including gloves, lab coats, and masks, will 
be used while adhering to the training 

Figure 1. Proposed Model of the Water Filtration 
System.  
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protocols to minimize all risks. We will also 
be using a biosafety cabinet, deconning our 
work area with bleach, and ensuring proper 
disposal of any hazardous materials to ensure 
safety. In the real-world application, the 
filtration system will be designed as a closed 
system to prevent direct human contact with 
the bacteria and other potentially hazardous 
components. Post-filtration water would be 
tested to ensure all safety standards are met 
before release or use.  

Discussions 
The biofiltration system presents a promising 
solution as it addresses the widespread issue 
of heavy metal contamination in drinking 
water. According to Frontiers in 
Environmental Science, “synthetic biology 
tools can be engineered to detect and degrade 
environmental contaminants with high 
precision and specificity,” which supports the 
use of synthetic biology combined with 
environmental engineering to develop a more 
cost-effective, sustainable, and scalable 
solution (Chen et al., 2020). This system can 
be utilized across underdeveloped, 
developing, and developed regions. 

One of the main advantages is the use of 
genetically modified bacteria. The bacteria is 
tailored for efficient heavy metal removal 
through biosorption, bioaccumulation, and 
bioprecipitation. These strategies, as 
reviewed in ScienceDirect, “offer higher 
specificity and a lower environmental 
footprint than traditional chemical 
treatments.” Additionally, using biochar 
ensures bacterial stability and extended 
filtration performance. Research shows that 
“biochar-immobilized microbes demonstrate 
enhanced degradation capacity and 
prolonged operational stability”. The 
modular design can then be further enhanced 
by allowing different communities to scale 
the system to their needs, providing ease of 
maintenance. 

However, there are challenges present in 
the system. Working with genetically 
modified organisms (GMOs) necessitates 
strict containment and biosafety protocols, 
which could limit real-world application in 
certain areas. As discussed by the Carnegie 
Endowment, “biosafety concerns regarding 

GMOs must be addressed through strict 
adherence to international protocols such as 
the Cartagena Protocol (Glenna & Cahill, 
2021). Another challenge can be maintaining 
long-term bacterial viability and activity 
within the filter itself. Accurate detection and 
quantification of heavy metals would also 
require access to advanced lab equipment 
such as Atomic Absorption Spectrometry 
(AAS) or Inductively Coupled Plasma Mass 
Spectrometry (ICP-MS), which may not be 
viable in all settings. 

To enhance the system’s performance, 
the following steps are to explore multi-strain 
co-culturing strategies, which can help to 
further improve metal specificity and 
removal efficiency. Genetic circuit tuning 
can also be used to boost bacterial resilience 
and metal uptake capabilities. Development 
of a compact filter is being explored for use 
in rural areas. Incorporating real-time 
biosensors, which “allow for autonomous 
monitoring of water quality and immediate 
feedback” (Rodriguez-Mozaz & Barcelo, 
2020) can further improve flow control and 
user trust. Through continued testing and 
development to enhance the system, the hope 
is to refine the design and bring this synthetic 
biology solution closer to a real-world 
impact. 

Next steps   
Over the next semester, the team will focus 
on transforming this design into a bench-
scale prototype that can be used for lab 
testing. First, a biocompatible flow-through 
module will be designed and 3D printed 
using SolidWorks computer-aided design 
software. These three chambers will be 
connected, and dye tests can test the seals. In 
parallel with this, each bacterial strain will be 
prepared by modifying it using the plasmids 
encoded for heavy metal filtration as 
specified in the design. Once cultured, these 
bacteria will be put into a biochar slurry and 
cast into the printed chambers. 

With this assembled unit, bench-scale 
filtration trials will be conducted using water 
with known high concentrations of the 
targeted heavy metals. Flow rates and contact 
times will be varied, and various setups for 
filtration chambers will be tested. The 
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effluent water will be analyzed using 
colorimetric test kits or available 
spectroscopy methods to quantify removal 
efficiency. Several tests at different input 
settings will be run to maximize removal 
efficiency. This rigorous testing will create a 
viable and scalable final prototype. 
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