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This project aims to develop a rapid, cost-effective method for detecting peanuts in food. Peanut allergies
affect approximately 6.2 million individuals in the United States, posing a serious public health concern due
to the risk of accidental exposure. Despite efforts to prevent allergen contamination, more than half of food
allergy reactions in restaurants occur even after staff are notified of a customer’s allergy. Existing detection
methods, such as ELISA (enzyme-linked immunosorbent assay) or PCR (polymerase chain reaction) are
sensitive but time-consuming and require specialized equipment. Our method involves using recombinase
polymerase amplification (RPA) to amplify the Ara h1 DNA sequence, a major peanut allergen, under
isothermal conditions. This would then be followed by CRISPR-Cas12a, which would recognize a chosen
target sequence and activate collateral cleavage of a ssDNA reporter linked to the chromoprotein amilCP,
producing a visible color change. This reaction will be incorporated into a lateral flow biosensor to create a
user-friendly, portable test. By improving accessibility and detection speed, this system has the potential to
significantly reduce accidental exposures and improve food safety for individuals with peanut allergies.
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ur goal is to develop a frugal and
Oportable method for detecting peanuts

in food. To achieve this, we designed
a biosensor using CRISPR-based DETECTR
technology, which integrates recombinase
polymerase amplification (RPA) and
CRISPR-Casl2a for rapid, specific peanut
DNA detection. Current methods like ELISA
and PCR, while sensitive, are costly,
equipment-dependent, and too  time-
consuming for real-time or field use. These

manufacturing, where fast decisions are
critical for individuals with peanut allergies
(Koczula & Gallotta, 2016).

Previous research has demonstrated that
combining isothermal amplification
techniques, like RPA with CRISPR-Cas12a,
is effective for detecting allergens and
pathogens (Chen et al., 2018; Li et al., 2018).
Unlike PCR, RPA operates at a single
temperature and provides faster results
without requiring thermocyclers or complex

limitations pose risks in settings such as lab setups (Wong et al., 2018). This
restaurants, schools, or in food accessibility makes RPA ideal for low-

* The authors were mentored by Letitiah Etheridge from Alpharetta High School and Aashi Agarwal, Nora Molten, and Della Waldman
from University of Chicago. Please direct correspondence to: etheridgel@fultonschools.org. This is an Open Access article, which was
copyrighted by the authors and published by BioTreks in 2025. It is distributed under the terms of the Creative Commons Attribution
License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly
cited.

291


mailto:etheridgel@fultonschools.org

BioTreks

resource or point-of-use applications.

For our biosensor, we selected Ara hl as
the target allergen. Compared to other peanut
proteins like Ara h3 and Ara h6, Ara hl is
more heat-stable, allowing it to remain intact
even after food preparation or thermal
processing. This makes it a reliable marker in
diverse food products. While we have not yet
identified the exact DNA sequence we will
amplify, we plan to select a conserved, stable
region of the Ara hl gene that remains
detectable after heating. Establishing such a
target is essential for ensuring accurate
results in real-world food samples.

For detection, we chose Cas12a due to its
ability to recognize specific DNA sequences
and trigger collateral cleavage of nearby
single-stranded DNA-—a property that
enables signal amplification (Chen et al.,
2018). This cleavage activity is central to our
chromoprotein-quencher  system, which
visually indicates the presence of target
DNA.

To convert the molecular signal into a
visual readout, we used amilCP, a
chromoprotein that produces a strong blue
color visible to the naked eye.
Chromoproteins like amilCP are preferred
over fluorophores in low-resource settings
because they do not require UV light or
detection equipment. We selected amilCP
specifically for its vivid color and rapid
maturation, which support quick, clear test

results (Ahmed et al., 2022).

Finally, we integrated the reaction into a
lateral flow biosensor. Lateral flow assays are
widely used in CRISPR-based diagnostics
because they are simple, portable, and
intuitive to interpret (Koczula & Gallotta,
2016). By combining CRISPR-Cas12a, RPA,
amilCP, and lateral flow technology, we aim
to develop a cost-effective, user-friendly
detection platform that empowers individuals
with peanut allergies to make safer food
decisions.

To implement this detection system, the
following procedure would be followed:

A solution containing the Ara hl DNA
sample, primers specific to Ara hl,
recombinase  enzyme, single-stranded
binding protein, strand-displacing DNA
polymerase, reaction buffer, ATP, and other
necessary cofactors would be incubated in a
sterile microcentrifuge tube at 37°C. This
allows primer invasion and amplification of
the Ara hl target sequence. After
amplification, Casl2a enzyme, crRNA
designed for Ara hl, and the amilCP-
quencher system would be added to the same
tube. Cas12a would recognize the amplified
Ara h1 DNA sequence and activate its trans-
cleavage activity, indiscriminately cutting all
nearby DNA, including the linker within the
amilCP-quencher system. Once the quencher
and chromoprotein are separated, the vivid
blue color of amilCP becomes visible, and

Chromoprotein-
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Figure 1. This Figure shows the proposed process of detecting peanut DNA in a scenario where there is
peanut DNA, and one where peanut DNA is not present, detailing the steps involved in sample collection,
DNA extraction and preparation, amplification, and detection.
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the results can be observed through a lateral
flow sensor if peanut contamination is
present.

Next steps

One crucial factor to consider is how to
efficiently crush samples. The finer a sample
is, the easier it is to extract proteins for
testing. Some possible devices include a
manual grinder, a motorized mini-blender, or
a rolling press that flattens and crushes food.
These are typically used on larger scales, but
exploring how they work can be helpful in
developing a transportable crushing method.
There may also be certain food-safe enzymes
available that break down proteins more
effectively, releasing peanut allergens.

Another challenge we are addressing is
device integration. Using DETECTR and
lateral flow sensors in separate devices is not
user-friendly, so we want to combine these
processes. Some potential solutions include
using a microfluidic chip to automate mixing
DETECTR’s CRISPR reaction with lateral
flow detection; a dual-step strip (in which the
CRISPR reaction occurs before flowing into
a lateral test zone); or a smartphone-based
reader to analyze subtle color changes
beyond the visual ability of the human eye.
These integrations could streamline the
workflow for non-laboratory users and
improve overall efficiency in fast-paced real-
world environments (Koczula & Gallotta,
2016).

We are also considering how to make the
device accessible for colorblind individuals.
Chromoproteins are used in our project to
visually indicate the presence of peanuts, but
this may present challenges for colorblind
individuals. In such cases, lateral flow
sensors could be useful since colorblind
individuals would look for the presence of a
line rather than a change in color. However,
AmiCP’s intense blue color alone may be
sufficient for colorblind individuals to
perceive a change in the device (Ahmed et al.,
2022). To ensure that these individuals can
confirm peanut detection, we could
implement an app that detects changes in
light levels, identifies colors, or uses different
kits with distinct chromoproteins. To address
the needs of blind users, we could also

Detecting Ara h1 in foods

incorporate an auditory feedback system
using a smartphone-connected app that
provides sound alerts upon a positive
detection result.

Another limitation to note is the inability
to detect airborne peanut allergens. Our
device will not be able to detect airborne
peanut proteins. For individuals with severe
peanut allergies, simply smelling peanuts
may cause life-threatening allergic reactions.
Researching a method to detect airborne
peanut allergens could expand our Kkit’s
usefulness to all allergic individuals.
However, airborne peanut proteins are
typically present at very low concentrations
and are not likely to trigger severe reactions
in most cases (Nilsson, 2021).

We are planning several experiments to
validate the prototype. After constructing a
prototype, it will be crucial to test its
sensitivity and specificity. This could be done
by using known peanut-contaminated and
peanut-free foods on the sensor, comparing
the test against existing peanut test kits to
measure accuracy, and testing different
sample preparation methods to determine
which provides the best protein extraction.
Studies on DETECTR-based systems have
reported sensitivity down to 10 aM
(attomolar) and specificity above 95% for
target DNA recognition (Chen et al., 2018; Li
et al., 2018). These values can serve as
performance benchmarks for our biosensor as
we optimize detection.

Finally, gathering feedback from real
users will be essential. Conducting trials with
real users to get feedback on ease of use,
speed, and clarity of results could help make
the sensor tests more globally accessible.
While our system is primarily designed for
consumer-facing scenarios such as restaurant
use, home use, or food allergy management
in schools, it may also be useful for small
businesses and food vendors aiming to ensure
allergen safety. However, it is not currently
designed for high-throughput industrial
ingredient screening at facilities like grocery
distributors.
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